
DREUS: Deep RL-Enabled UAV Swarm for
Post-Disaster Surveillance and Survivor Response

Abstract—Unmanned aerial vehicles (UAVs) have proven ef-
fective across diverse domains due to their flexibility, cost-
efficiency, and ease of deployment. On account of their ability
to traverse challenging terrains and operate independently of
ground-based infrastructure, UAVs are particularly well-suited
for disaster response. However, in post-disaster scenarios where
traditional networking infrastructure has collapsed, autonomous
operation of UAVs becomes inevitable. To maximize the rescue
efforts and minimize the loss of life, it is crucial to effectively
survey the affected area, locate and identify survivors, and ensure
emergency assistance. Moreover, navigation in disaster-affected
areas presents unpredictable dynamics such as debris, collapsing
structures, etc. Thus, for effective disaster response, UAVs must
be trained to achieve specific objectives while navigating dynamic
obstacles. Consequently, in this work, we propose DREUS,
a deep reinforcement learning (DRL)-based disaster response
framework, enabling UAV swarm to conduct surveillance in post-
disaster environments as well as identify and assist survivors
based on facial features and emotion recognition. The framework
incorporates a shared swarm database, which facilitates coordi-
nated exploration by preventing redundant visits and centralizing
survivor data for seamless identification and reacquaintance. To
optimize UAV performance, DREUS employs federated DRL,
promoting collaborative exploration and leverages a significant
replay memory buffer (SRMB), expediting individual agent train-
ing through prioritizing critical experiences. Survivor movement
within the DRL training environment is modeled using real-
world ‘human mobility in disaster’ datasets, enhancing realism
and reliability. The framework’s effectiveness is assessed through
implementation in the OpenAI Gym environment, simulating
various disaster scenarios to evaluate its performance comprehen-
sively. The framework is further validated through CoppeliaSim,
a realistic simulator incorporating advanced physics, cameras,
and GPS functionalities.

Index Terms—Federated learning, deep reinforcement learn-
ing, unmanned aerial vehicles, facial recognition, path planning

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have become integral
to modern technology, finding applications across diverse
domains due to their versatility, cost-efficiency, and rapid
deployment capabilities. Their use spans from agricultural
monitoring, infrastructure inspection, and logistics delivery to
environmental conservation and urban planning [1]. In recent
years, UAVs have gained prominence in disaster response
due to their ability to operate autonomously in challenging
and hazardous conditions [2]. According to a study by the
United Nations Office for the Coordination of Humanitarian
Affairs (OCHA), the use of UAVs in disaster scenarios can
reduce the time required for damage assessment by up to
50% compared to traditional methods [3], [4]. Moreover,
the International Federation of Red Cross and Red Crescent

Societies (IFRC) highlights that UAVs significantly improve
situational awareness in search-and-rescue missions, enhanc-
ing the likelihood of saving lives [5]. Equipped with advanced
sensors and cameras, UAVs can navigate areas inaccessible to
ground teams, efficiently identify survivors, and provide real-
time data for coordinated relief efforts, making them an ideal
choice for post-disaster applications.

The autonomous navigation of UAVs, enabling efficient and
precise flight paths without human intervention, is essential in
disaster environments due to the unpredictable and dynamic
nature of such scenarios. Post-disaster areas are often char-
acterized by collapsed infrastructure, debris, and inaccessible
terrains, which make manual UAV operation challenging and
inefficient. Moreover, the lack of reliable communication net-
works in disaster-hit areas underscores the need for UAVs
to operate independently, enabling coordinated search-and-
rescue missions without human intervention. Several studies
have explored the use of UAVs for disaster response. For
instance, Erdelj et al. proposed a framework for UAV-based
communication networks to assist in disaster scenarios [6],
emphasizing the importance of autonomous swarm navigation
for better coverage and coordination. In a study by Kerle et
al., UAVs were employed for damage assessment, highlighting
their effectiveness in accessing remote locations quickly [7]. A
more recent work by Bai et al. introduced a cooperative UAV
framework for monitoring flood-affected regions, demonstrat-
ing the potential of UAV swarms to efficiently gather data
and streamline response efforts [8]. These studies highlight
the vital role UAVs play in disaster scenarios; however, they
overlook critical aspects of survivor rescue and prioritization.

To this end, Alawad et al. proposed a system utilizing
swarm optimization algorithms to maximize area coverage and
victim localization [2]. However, the study mainly focused on
optimizing search patterns without integrating real-time sur-
vivor identification or swarm-level coordination enhancements.
Similarly, the Swarm-Specific Search and Rescue (SS-SAR)
framework introduced decentralized UAV swarm coordination
for locating and rescuing agents but lacked emphasis on
integrating advanced recognition techniques such as emo-
tion or facial analysis for survivor prioritization [9]. Wan
et al. presented improved path-planning strategies for UAVs
navigating hazardous environments [10]. While effective for
terrain challenges, this study did not incorporate collaborative
decision-making or a centralized data-sharing approach among
UAVs. These works tend to focus on specific components,
such as swarm coordination or navigation, and do not fully
address the integration of survivor identification with advanced

1



EnvironmentQ Network
State

Target Network
C

op
y 

ea
ch

N
 s

te
ps

Replay Memory
Buffer

Loss calculation of Q value

Action: (ARGmaxQ(
state,action|wights))

Store: (state,action,
reward,next state)

next state (state,
action)

reward

Q
(s

ta
te

,
ac

tio
n|

w
ig

ht
s)ARGmaxQ

(next state,
next action|
wightstarget) G

ra
di

en
t

w.
r.t

 lo
ss

Deep Reinforcement Learning

Fig. 1. Deep Reinforcement Learning Architecture.

emotion recognition or the challenges of collaborative UAV
swarm operation in a dynamic post-disaster environment.

To address the gaps identified in existing works, we
propose DREUS, a comprehensive Deep Reinforcement
learning (DRL)-enabled disaster response framework using
UAV Swarm. Unlike previous approaches that often neglect
survivor-centric rescue activities, DREUS enables UAV swarms
to conduct extensive surveillance in post-disaster environments
while identifying and reacquainting survivors using advanced
facial recognition model (i.e., YOLOv8s [11]) and emotion
analysis classifier (i.e., Haar Cascade [12]). By incorporating
a shared swarm database, our framework ensures efficient
and coordinated exploration, avoiding redundant UAV visits
while centralizing survivor data for seamless tracking and
prioritization. Furthermore, DREUS leverages federated DRL,
which facilitates collaborative training among UAVs, enhanc-
ing their decision-making and adaptability in dynamic disaster
scenarios. To accelerate the learning process, a significant
replay memory buffer (SRMB) is used, that prioritizes critical
experiences, ensuring that UAVs can rapidly adapt to high-
stakes situations. Realistic modeling of survivor movement,
based on human mobility patterns from real-world disaster
datasets [13], further enhances the reliability and practicality
of our approach. Our contributions are four-fold:

• We propose DREUS, a DRL-based disaster response
framework designed to enable UAV swarms to conduct
coordinated surveillance and effectively locate survivors
in post-disaster environments.

• We incorporate a shared swarm database that prevents
redundant UAV visits and centralizes survivor data, en-
abling coordinated exploration and automated survivor
identification and reacquaintance.

• We optimize the training using federated learning (FL)-
based collaborative exploration and leverage SRMB to
expedite training by prioritizing critical experiences.

• We validate the framework through implementation using
OpenAI Gym [14], modeling survivor behavior using
real-world human mobility data from disaster scenar-
ios [13] and further evaluate its performance in Cop-
peliaSim simulator [15].

The remainder of the paper is structured as follows: We

go over the preliminary information in Section II. Section III
discusses the related works. In Section IV we present our
proposed DREUS framework. We go over the frameworks’
technical specifics in Section V. In Section VI, we explain
the evaluation setup and present the empirical analysis and
findings. Finally, we conclude the paper in Section VII.

II. BACKGROUND

In this section, we present some preliminary concepts that
will help explain the framework later.

A. Deep Reinforcement Learning

A promising method for autonomously learning complicated
behaviors from limited sensor observations is DRL. While
much DRL research focuses on video games and simulated
control, it has also demonstrated potential for enabling physi-
cal robots to learn real-world skills. Since real-world scenarios
closely resemble human learning processes, they provide an
ideal testbed for DRL algorithms [16]. Unlike traditional
RL, where agents rely on a Q-table, DRL uses a neural Q-
network, enabling effective learning in complex, real-world
environments. The system diagram of a DRL architecture
is presented in Figure 1. For training the Q-network, the
agent’s experiences are saved as training data samples into
a storage called Reply Memory Buffer. To provide stability
to the action decision from the Q-network, an additional
supplemental neural network is added to the DRL framework,
called the target network. The weights from the Q-network
are copied to the target network after a certain number of
episode steps. The target network predicts the future Q-values
for the next states, which are used to calculate the loss of the
Q-network’s prediction.
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Fig. 2. Basic steps of Multiple Object Tracking (MOT) algorithms.

B. Multiple Object Tracking

Multiple Object Tracking (MOT) is a core computer vision
task focused on tracking multiple objects across video frames.
Objects are detected and localized using algorithms like HOG,
R-CNN, YOLO, or SSD, which generate bounding boxes and
assign unique IDs based on accuracy and computational needs
(Figure 2). MOT then links objects across frames to maintain
identities, even during occlusions or detection loss. Techniques
like Kalman filtering predict future positions, while methods
like Deep SORT leverage deep learning for robust tracking,
effectively handling ID switches and occlusions.

2



C. Facial Encoding for Emotion Detection

Facial Encoding for Emotion Detection involves analyzing a
person’s facial expressions and converting them into numerical
representations (encodings) that correspond to different emo-
tions, such as happiness, sadness, anger, or surprise. Using
machine learning models, facial encoding captures subtle
facial features like eyebrow movements, mouth curvature,
and eye positioning, which are key indicators of emotional
states [17]. Once encoded, these features are compared against
known patterns of facial expressions to classify emotions.
Deep learning techniques, particularly convolutional neural
networks (CNNs), are commonly used for this task, making
emotion detection more accurate and applicable in areas like
human-computer interaction, customer experience analysis,
and mental health monitoring.

D. Federated Learning

Data and computation resources are now often dispersed
across end-user devices, different areas, or corporations. Laws
or regulations prevent the aggregated or direct sharing of
distributed data and computing resources among various areas
or organizations for machine learning tasks. FL is an effective
approach for utilizing distributed computing and data resources
to collaboratively train machine learning models. FL also
abides by the rules and regulations to ensure data security
and privacy [18]. The basic goal of FL is to do a collaborative
on-device training of a single machine learning model without
disclosing the raw training data to any other parties [19]. The
basic steps of an FL architecture is shown in Figure 3, where
the cloud server holds the global machine learning model to be
trained. In the first iteration, the random weights of the global
model is Sent to the end devices, each having a local model.
The end devices Train their respective local models with their
private data and then Submit the local model’s weight to
the global model. Finally, the global model Aggregates the
weights and Updates it’s weights. The updated global model’s
weights again Sent to the end devices, each of which Updates
their local models and Trains it with the private local data.
These steps are repeated till the end of iterations.

III. RELATED WORK

The use of UAVs for disaster response has been widely
explored in recent years, addressing various challenges such as
area coverage, obstacle navigation, and search efficiency. For
instance, Gomez et al. present UAV-based systems for post-
earthquake assessment, where UAVs autonomously surveyed
disaster-stricken areas to generate high-resolution 3D maps
for structural damage analysis [20]. In another study, Mo-
hapatra et al. presented UAV-assisted remote sensing frame-
works for wildfire detection and damage assessment [21].
UAVs equipped with thermal and infrared cameras effectively
detected hotspots and evaluated fire propagation. Munawar
et al. proposed a UAV system for flood monitoring using
satellite imagery and UAV-collected data to estimate water
levels and identify high-risk zones [22]. These works have
demonstrated the potential of UAVs for disaster assessment

Fig. 3. Federated Learning Architecture.

and environmental monitoring; however, overlooked the need
for survivor detection and assistance.

Consequently, Oh et al. introduced a UAV system equipped
with thermal imaging cameras to locate survivors in post-
disaster environments [23]. By detecting body heat signatures,
their method enabled efficient identification of survivors. Ly-
gouras et al. proposed a UAV-based search-and-rescue (SAR)
system that combined computer vision and machine learning
to identify survivors from aerial images [24]. While these
systems were effective for detecting survivors, they did not
address environmental dynamics or obstacle avoidance, which
are critical in disaster scenarios. Zhang et al. developed
a UAV-assisted framework for search-and-rescue operations
using vision-based algorithms to locate survivors in collapsed
structures [25]. Their study demonstrated the feasibility of
UAVs in identifying survivors but did not optimize UAV path
planning for coordinated exploration.

To address the challenges of dynamic environments and
survivor assistance, Wang et al. proposed a UAV path plan-
ning algorithm using multiple-waitlist-based task assignment
(MWTA) algorithm to navigate disaster environments [26]. In
another study, Wu et al. employed a DRL-based method for
UAV path-finding in dynamic disaster scenarios and identified
optimal routes and targets through training [27]. These ap-
proaches fall short in implementing collaborative exploration
strategies, advanced survivor identification with emotion de-
tection, and realistic modeling of survivor movements. The
proposed DREUS framework addresses these limitations by
integrating federated DRL for swarm collaboration, shared
databases for survivor tracking, and real-world human mo-
bility datasets to enhance realism, ultimately improving the
effectiveness of disaster response efforts.

IV. PROPOSED FRAMEWORK

In this section, we discuss the proposed DREUS framework
in detail, as depicted in Figure 4. The overall objective of the
framework is to survey a post-disaster area, detect survivors
(identification), and provide prioritized assistance (through
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Fig. 4. The proposed DREUS Framework.

alerting rescue teams) using emotion analysis classifiers. In the
subsequent sections, we introduce all the proposed modules.

A. Ground Station

The ground station houses two key elements of the frame-
work: (i) the global model for FL and (ii) a server responsible
for managing the shared database and its data. This module is
vital to the entire framework, as it provides the computational
power and intelligence necessary for decision-making. Each
UAV in the swarm has its own DRL model that is trained
through the UAV’s interaction with the environment. Each of
these UAVs sends its trained individual DRL models to the
ground station consecutively after certain time frames, where
the global model aggregates these parameters (i.e., weights
and biases) to update itself. The ground station continuously
shares the updated global DRL model with the UAV swarm
to ensure collaborative exploration experiences by the UAVs.
Apart from storing all the information contained in the shared
database (e.g., surveillance and survivors), the server shares
up-to-date models for face recognition, emotion detection, and
damage assessment with swarm through the shared database.

B. UAV Swarm

The UAV swarm plays the central role in conducting various
tasks in the disaster environment, including:

• Coordinated Survey: The UAVs work coordinately (en-
sured through reward function, discussed in Section V)
to scan areas of the disaster zone for damage assessment,
identifying survivors and locate areas of interest.

• Facial Encoding and Matching: The UAVs utilize facial
encoding algorithms to identify and match survivors, aid-
ing in the tracking of individuals who may be displaced
during the disaster.

• Carrying Shared Database: A subset of the UAVs
considered to be on high altitude platforms (HAPs),
hovering at strategic locations and carrying the shared
database. The other UAVs are considered to be on low-
altitude platforms (LAPs), performing surveillance and
survivor tracking.

The UAV swarm stays synchronized with the shared
database to ensure surveillance cooperation and access to
identified survivors’ encodings. It also keeps the UAVs updated
with the latest facial and emotion detection models.

C. Shared Database aided Disaster Environment Interaction

A shared database serves as a core repository for all
collected data, ensuring that all components of the system
are connected and can access updated information as well as
models. Specifically, it contains data such as facial recognition
matches, survivor locations, and damage assessments, which
can be accessed by all UAVs for coordinated actions. The
continuous syncing between the UAV swarm, ground station
server, and shared database also enables real-time data analysis
and model training to improve decision-making. Thus, the
collected data through post-disaster zones exploration spans
two main areas:

1) Area Damage Assessment and Surveillance: The UAVs
assess the extent of damage in the affected region,
providing aerial imagery and real-time updates to the
ground station. This data is crucial for understanding
the scale of the disaster and prioritizing rescue efforts.

2) Survivor Identification and Reacquainting: The swarm
identifies and monitors survivors using advanced recog-
nition and emotion detection algorithms. The system
focuses on locating individuals in distress and directing
help to them quickly.

As mentioned earlier, the shared database is carried by
the HAP UAVs. The DREUS Framework integrates federated
DRL, facial recognition machine learning models, and UAV
technologies to manage disaster situations, ensuring rapid,
large-scale data collection and analysis, enabling efficient
rescue missions in post-disaster zones.

V. TECHNICAL DETAILS

This section delves into the technical details of DREUS.
We begin by formulating the post-disaster response task as a
Markov Decision Process (MDP)-based DRL approach. Next,
we elaborate on the survivor detection technique, followed by
an explanation of the federated DRL model. Lastly, we explore
the SRMB module and the design of the environment.

A. Modeling the DRL for Surveillance and Survivor Tracking

We model the problem as a Markov game, which general-
izes the MDP. Typically, a DRL-based MDP is represented by
a five-tuple comprising states, actions, transition probabilities,
rewards, and a discount factor. However, given the complexity
of the post-disaster environment in this study, we designed a
more sophisticated MDP. The notations used for designing the
MDP are defined in Table I. Formally, our MDP is represented
by the nine-tuple S, A, T, R, π, ϵ, γ, ϕ, σ, with each component
described in detail in the following sections:
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1) States (S): The set of states encompasses all possible
observations an agent can make within the environment. In
our partially observable MDP, an agent’s observation at a given
time step consists of one or more layers of cubes surrounding
it. Specifically, if there is one layer, this means the agent per-
ceives 27 cubes around it. This concept effectively simulates
the agent’s partial view of the environment, enabling it to
anticipate obstacles or nearby survivors. The agent can closely
monitor any point of interest that enters its surrounding layers.
Additionally, we assume that agents can observe the rewards
associated with each cell of the two-dimensional plane on the
ground (the area being surveyed), with updates on current
rewards shared among all agents via the shared database.
Knowing high-reward cells at the episode’s start, agents plan
trajectories toward them while dynamically avoiding obstacles.

2) Actions (A): The set of actions represents the activities
an agent can perform to interact with the environment. Since
we are modeling a discrete environment made up of cubes, the
agent’s movements are also discrete (as opposed to continu-
ous angular movements). The agent can execute 11 actions,
including moving up, down, forward, backward, left, right,
diagonally in four directions, or hovering.

3) Transition (T): Transition probability defines the likeli-
hood of moving from one state to another. In our model, this
probability depends on both the current state and the L most
recent states, where L is the number of surrounding layers
visible to the agent. The agent utilizes information about the
L adjacent cubes to select an appropriate action.
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Fig. 5. Simplified reward structure for surveillance.

4) Reward (R): The reward function guides the agent’s
learning by assigning rewards and penalties. Two kinds of re-
wards and one penalty are defined in our case. The first reward,
illustrated in Figure 5, motivates surveillance by rewarding
UAVs for visiting ground cells. Each cell starts with a reward
of 10, which resets to zero when visited, discouraging revisits.
Rewards for each cell increase by one per time step, encourag-
ing UAVs to prioritize unvisited cells and avoid recently visited
cells. The second reward incentivizes survivor detection using
our proposed autonomous identification technique (detailed
in the following section). If a survivor is detected for the
first time, the agent receives twice the reward compared
to detecting a previously identified individual. To enforce
obstacle avoidance, a penalty comparable in magnitude to the
survivor reward is applied when agents encounter obstacles,
such as debris or damaged buildings.

5) Policy (π): The policy dictates the agent’s behavior by
determining which action to take in a given state, based on
its exploration of the environment. In our model, the policy

TABLE I
LIST OF NOTATIONS

Symbol Definition
S Set of states
s Current state
s’ Next state
A Set of actions
R Reward function
r Current reward
L Agent’s observable number of layers
K FL model update interval (episodes)
N Target model update interval (steps)
B Batch size of Q-network training samples
T Transition probability
π Policy
ϵ Exploration parameter
γ Discount factor
ϕ Sorting parameter
σ Sampling rate
δ ϕ value increment interval

is represented by the Q-network’s weights and biases, which
guide the agent’s action for a given observation of the state.

6) Exploration Parameter (ϵ): The exploration parameter
controls the agent’s action strategy. Initially set near 1, ϵ
encourages random actions to aid learning. Over time, ϵ
decreases, reducing randomness and prompting the agent to
exploit the Q-network by leveraging learned knowledge.

7) Discount Factor (γ): The discount factor (γ) balances
the agent’s focus on immediate versus future rewards, ranging
from 0 to 1. A value of γ close to 0 makes the agent short-
sighted, focusing only on immediate rewards. Conversely, a
future reward R that occurs after N steps will be discounted
by a factor of RN as γ approaches 1, indicating a greater
concern for long-term gains.

8) Sorting Parameter (ϕ): This parameter governs the
insertion of experiences into the SRMB. Its value ranges from
0 to 1, where a value of zero indicates that only experiences in
which an agent encounters a survivor or obstacle are stored in
SRMB, disregarding layer encounters. The parameter can be
incrementally increased to one over L steps, where L repre-
sents the number of layers. Let δ represent the incremental
change in the ϕ value, which can be calculated using the
following equation:

δ =
ϕmax - ϕmin

L
(1)

Here, ϕmax is set to 1 and ϕmin to 0. An initial increment
from 0 indicates that only experiences involving a survivor
or obstacle in the nearest layers are stored. As the parameter
approaches 1, all experiences, including those involving goals
or obstacles in the farthest surrounding layers, are also stored.

9) Sampling Rate (σ): This parameter regulates the sam-
pling rate of experience memories used for batch-wise training
of the Q-Network. It can range from 0 to 1, where a value
of 0 means all samples are drawn from the general Replay
Memory Buffer, while 1 indicates all samples come from the
SRMB. We test various σ values to evaluate SRMB’s impact
on DREUS’s performance.
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B. Autonomous Survivor Identification and Emotion Detection

In addition to post-disaster zone surveillance, the primary
goal of the DREUS framework is real-time survivor detec-
tion and emotion classification. As swarm UAVs navigate
the affected area, they continuously execute human detection
algorithms using data from their camera sensors. Detected
survivors’ encoded features are stored in a shared database,
ensuring centralized access for coordinated operations. The
system then utilizes an emotion recognition classifier to assess
the emotional states of the survivors, enabling prioritiza-
tion of assistance based on urgency. Another key feature is
the reacquaintance of previously identified survivors after a
specified time interval. To avoid continuous tracking, which
could degrade overall surveillance performance, a carefully
balanced time threshold is implemented. This threshold is set
high enough to prevent UAVs from persistently following an
individual but low enough to minimize the risk of a survivor
moving too far from their last identified location. This balance
ensures efficient resource allocation while maintaining the
safety and visibility of survivors.

This module, consisting of multiple subsystems, is orches-
trated by a Queue manager that serves as the communication
backbone. Utilizing a queue-based architecture, it optimizes
inter-process communication and supports parallel computing,
enhancing both scalability and responsiveness.

1) Human Detection Subsystem: This subsystem employs
the YOLOv8s model by Ultralytics [28] to detect human
presence in RGB images extracted from video feeds. This
model was selected for its balance of computational speed and
detection accuracy, making it well-suited for real-time appli-
cations. To maintain robust tracking, the Supervision library
is integrated to streamline communication between detection
and tracking modules. The ByteTracker algorithm [29] is
utilized to provide continuous updates on the spatial positions
of detected individuals. Detection outputs, including bounding
box coordinates, confidence scores, and class identifiers, are
relayed to ByteTracker for precise and real-time monitoring.

2) Face Detection and Emotion Recognition Subsystem:
This subsystem is designed to identify and assess the emo-
tional states of individuals detected in the environment.
Face Detection: It employs the Haar Cascade Classifier [12]
from OpenCV for its computational efficiency and effec-
tiveness in detecting faces in real-time. Detected faces are
extracted using bounding box coordinates provided by the
detection module. To prevent redundant processing, the system
compares extracted facial features to a database of existing
detections, eliminating duplicate identifiers.
Emotion Recognition: Emotion analysis is performed using
a custom-designed CNN. The CNN features multiple con-
volutional layers for feature extraction, followed by fully
connected layers tailored to classify facial expressions into
seven categories: angry, disgust, fear, happy, neutral, sad,
and surprise. The model is implemented and trained using
TensorFlow/Keras, leveraging its optimization capabilities to
ensure efficient training and inference.
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The system’s queue-based command structure enables
seamless interaction between human detection, face process-
ing, and emotion recognition. Such integration allows for real-
time identification and emotional assessment of individuals,
which is critical for effective decision-making in disaster
response scenarios.

C. Federated Learning for Swarm Intelligence

FL is primarily used to train machine learning models from
distributed data sources while ensuring data privacy. We found
that FL’s inherent distributed learning structure enhances the
performance of swarm-based learning models, as the global
model benefits from the diverse experiences of different swarm
agents. Similar to standard FL, our proposed federated DRL
(FDRL) follows four repeating steps, as shown in Figure 3.
At the start of the first episode, a global Q-network (at
ground station) is initialized with random weights and biases
and distributed to all agents. Each agent then initializes its
local Q-network model using the received weights and biases.
After every K episodes, agents submit the current weights
and biases of their Q-networks to the ground stations global
model, where an aggregator processes the received models.
We experimented with three different aggregation algorithms,
which are discussed later in this section. The global model
is then updated with the aggregated weights and biases and
redistributed to all agents at the start of the (K+1)-th episode.
The agents, in turn, update their local Q-networks by copying
the weights and biases from the global model. Algorithm 1
presents the steps involved in the proposed FDRL.

1) FedSGD: Federated stochastic gradient descent
(FedSGD) [30] averages the gradients from a randomly
selected subset of swarm UAVs to perform a gradient
descent step for updating the global model.

2) FedAvg: Federated averaging (FedAvg) [31] updates the
global model by averaging the weights and biases of all
local Q-networks.

3) FedMA: Federated match averaging (FedMA) [32]
merges nodes with similar weights in each layer of the
network, updating the global model based on these.
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Algorithm 1: Proposed Federated DRL Algorithm
1 Set {A,R,B,N, ϵ, γ, ϕ, σ} for DRL
2 Set {K,AlgoAggregate} for FL
3 Set {L,LimitENV } for S
4 for each iteration ∈MaxIterations do
5 Initialize(Agents, Survivor,ObstacleStat, ObstacleDyn)
6 for each episode ∈MaxEpisodes do
7 CreateENV(Survivor,ObstacleStat, ObstacleDyn)
8 if episode == 0 then
9 Intialize(globalModel)

10 Agents ← Send(globalModelw,b)
11 end
12 for each step ∈MaxSteps do
13 for each agent ∈ Agents do
14 if rand(0, 1) ≥ ϵ then
15 action← agent.QNet(s)
16 end
17 else
18 action← rand(A)
19 end
20 r, s′ ← Perform(action, s)
21 agent.Memory ← ϕ(action, s, r, s′)
22 if Size(agent.Memory) ≥ B then
23 B ← σ(agent.Memory)
24 agent.QNet.train(B)
25 end
26 if agent.loc == Goal.loc then
27 Update(ϵ)
28 end
29 if step%N == 0 then
30 agent.TagetNet← agent.QNet
31 end
32 end
33 end
34 for each agent ∈ Agents do
35 B ← σ(agent.Memory)
36 agent.QNet.train(B)
37 end
38 if episode%K == 0 and episode ≥ 1 then
39 localModels ← {}
40 for each agent ∈ Agents do
41 localModels ← Submit(agent.QNet)
42 end
43 globalModel←Update(Aggregator(localModels))
44 Agents ← Send(globalModelw,b)
45 end
46 end
47 end

We experiment using each of the algorithms (discussed in
Section VI) to choose the optimal one for DREUS.

D. Selective Training with SRMB

In this section, we discuss the proposed SRMB concept,
designed to accelerate the training of the Q-network. Typically,
as discussed in Section II, the training data for the Q-network
in DRL consists of experience tuples gathered from the agent’s
exploration. At each time step, the agent’s current state, action,
reward, next state, and a completion flag (indicating goal
achievement) are stored as a tuple in a memory buffer. This
buffer has a fixed size, and after each episode, a random batch
of tuples is selected for training the Q-network. However,
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Fig. 7. The simulated environment for training the UAV swarm.

random sampling does not always guarantee that the selected
tuples will significantly aid the learning of intelligent behavior.

To address this, we propose SRMB, which enhances model
training by prioritizing the most important memory tuples.
Each agent will utilize both the standard reply memory buffer
and the SRMB, with the impact of SRMB controlled by a
sampling rate parameter (σ) and a sorting parameter (ϕ). The
roles of σ and ϕ were previously discussed. Figure 6 illustrates
the block diagram of the improved DRL training using SRMB.

1) Sorter: In contrast to standard DRL, where memory
tuples are directly stored in the reply memory buffer, in our
approach, all memory tuples first pass through the sorter. The
sorter categorizes the tuples based on the ϕ parameter and
stores the most relevant ones in the SRMB. The remaining
tuples are sent to the Reply Memory Buffer.

2) Sampling Technique: This module prepares the training
batch for the Q-network. Based on the sampling rate σ, it
selects B × σ samples from the SRMB, where B is the size
of the training batch. The remaining B× (1− σ) samples are
drawn from the Reply Memory Buffer.

E. Modeling the Post-Disaster Scenario

To simulate a realistic post-disaster environment for the
DRL training, a 3D environment was developed using OpenAI
Gym that accurately represents the challenges a UAV swarm
might encounter during the post-diaster response. As presented
in Figure 7, the environment incorporates damaged buildings,
survivors, and dynamically moving obstacles (debris), each
contributing to a more complex and varied decision-making
landscape for the UAV swarm.

Damaged Buildings: Represented as vertical towers, build-
ings have varying levels of damage, categorized as minor,
moderate, or severe. This categorization influences UAV be-
havior, as the reward for detecting these buildings depends on
the severity of the damage. The buildings are distributed across
different heights and locations in the environment, simulating
real-world structural damage patterns.
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Fig. 8. Comparison of various DRL models from the OpenAI Gym baselines
library, evaluated in training environments: (a) using human mobility datasets
from different disasters to analyze reward gains, and (b) using all datasets to
compare performance metrics.

Survivors: The movement of survivors in the simulated en-
vironment is modeled using human mobility data derived from
real-world disaster scenarios [13]. This data, collected from
geolocated Twitter activity during natural disasters, provides
a realistic basis for simulating survivor behavior. The dataset
includes movement patterns across various disaster types, such
as typhoons, earthquakes, winter storms, thunderstorms, and
wildfires, ensuring that the framework is adaptable to any kind
of disaster. Survivors’ movements are informed by the power-
law dynamics observed in human mobility, reflecting resilience
and perturbations due to disaster events. This comprehensive
dataset enables the framework to incorporate realistic and
diverse mobility behaviors, representing both steady-state and
disrupted conditions. Consequently, UAVs trained in this en-
vironment are better equipped to adapt to a wide range of
disaster scenarios. Survivor movements are constrained to the
XY plane and simulate injuries or restricted mobility caused
by entrapment, but their trajectories follow patterns observed
in the dataset, enhancing the authenticity of the simulation.

Debris: A unique addition to the environment is the inclu-
sion of randomly moving debris that poses a dynamic obstacle
for the UAVs. Unlike the fixed-position damaged buildings,
debris moves in all directions (including along the Z-axis),
adding another layer of complexity. Collisions with debris
also result in penalties, simulating the need for UAVs to avoid
moving objects during the search mission.

The environment is designed to replicate the complexity
of real-world disaster recovery operations, combining static
obstacles (buildings) with dynamic ones (debris) to challenge
UAVs in balancing exploration, survivor detection, and ob-
stacle avoidance. A differential penalty system encourages
safe navigation, while randomly moving debris simulates the
unpredictability of post-disaster conditions.

VI. EVALUATION

In this section, we evaluate the DREUS framework through
a series of experiments. First, we justify the selection of DQN
as our DRL model by comparing it with other DRL alterna-
tives. Next, we assess the model’s capabilities in surveillance,
obstacle avoidance, and survivor detection. Subsequently, we
analyze performance improvements achieved by optimizing
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Fig. 9. Experimentation with the survivor detection performance: (a) percent-
age of survivors detected over training episodes and (b) number of survivors
detected at each step of an episode.

SRMB parameters, followed by an evaluation of face and
emotion detection models. Finally, we investigate FL aggre-
gation techniques and validate the framework’s real-world
performance using CoppeliaSim.

A. Comparison of DRL Models Across Disaster Scenarios

In this section, we analyze the performance of various
baseline DRL models (available in OpenAI Gym) across
different disaster scenarios (Figure 8). As shown in Fig-
ure 8(a), the total reward accumulated by DQN, PPO, A2C,
SAC, and DDPG models, when trained using human mobility
dataset in disaster environments, exhibit varying performance
across typhoons, earthquakes, winter storms, thunderstorms,
and wildfires. Among the models, DQN and PPO consis-
tently achieve higher rewards, demonstrating superior learning
capabilities and adaptability across all disaster types. DQN,
in particular, accumulates the highest rewards, indicating its
robustness in handling complex and dynamic environments.
SAC and A2C show moderate performance, while DDPG lags
behind, accumulating the lowest rewards overall.

Figure 8(b) shows the performance of baseline DRL models
across key metrics: surveillance coverage, survivor detection,
debris collisions (scaled by 1/10th), and scaled rewards using
all disaster datasets. DQN achieves the highest performance,
with close to 80% surveillance coverage and 90% survivor
detection, while maintaining the lowest debris collisions. PPO
follows closely with comparable results. In contrast, SAC
and A2C achieve moderate performance, with coverage and
detection rates around 70-75%, while DDPG performs the
worst, achieving under 60% in both coverage and detection.

B. Survivor Detection Performance

In this section, we analyze the survivor detection perfor-
mance of the model. Figure 9 shows a strong correlation
between swarm size and detection efficiency. As shown in
the Figure 9(a), larger swarms consistently outperform smaller
ones in both learning speed and detection rates. The 150 UAV
swarm rapidly improves, reaching over 80% detection by the
600th episode and surpassing 90% by the 1000th, showcasing
effective area coverage and collaboration. In comparison, the
100 UAV swarm achieves nearly 70% detection, while the
50 UAV swarm progresses slower, reaching around 60% by
episode 1000. These results indicate that smaller swarms
require more training to optimize their search strategies.
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Fig. 10. Experimentation with the collision avoidance performance through
box-plots: (a) collision count distribution with different RPR and (b) the
distribution of survivor detection failure with different RPR.

Figure 9(b) highlights detection progress for the 150 UAV
swarm at Episodes 1, 500, and 1000. Initially, the UAVs detect
few survivors, reflecting a lack of optimized strategies. By
Episode 500, detection improves significantly, with over 400
survivors identified at the final step, showcasing enhanced
collaboration and spatial coverage. By Episode 1000, perfor-
mance nears optimal levels, detecting nearly all 500 survivors.
However, the rate of improvement tapers off between Episodes
500 and 1000, indicating diminishing returns as the model
converges toward optimal strategies.

C. Collision avoidance with Penalty Trade-off

We investigate the impact of different Reward Penalty Ratio
(RPR) values on UAV swarm collision avoidance, as shown in
Figure 10, and analyze their effect on survivor identification
to estimate an optimal RPR. Figure 10(a) shows that lower
RPR values (0.5, 1, and 2) result in fewer collisions, with
lower medians and compact interquartile ranges. This indicates
that UAVs can explore effectively with minimal concern for
collisions. As RPR increases to 5 and 10, collision counts
rise significantly, with the median for RPR=10 reaching ap-
proximately 12,500 and a much wider interquartile range,
reflecting high variability. Excessive penalties make UAVs
overly cautious, leading to ineffective navigation and increased
collisions due to restricted movement. While outliers are
present at lower RPR values, their frequency and spread grow
at higher RPR values. The results suggest that moderate RPR
values strike a better balance between exploration and collision
avoidance, whereas high penalties cause suboptimal behavior.

Figure 10(b) shows the survivor detection failure counts
over 500 episodes for different RPR values, revealing their
impact on UAV swarm performance. Lower RPR values (0.5,
1) result in higher detection failures, with counts often exceed-
ing 400. For RPR = 0.5, variability is significant (160–476),
indicating that UAVs prioritize collision avoidance over ac-
curate detection. As RPR increases to 2, detection failures
decrease, with fewer outliers and counts dropping as low as
50. This suggests a better balance between collision avoidance
and survivor detection. At higher RPR values (5, 10), failure
counts remain low, but UAVs may overly focus on detection
at the expense of collision avoidance. Overall, moderate RPR
values, such as 2, achieve the best balance between efficient
navigation and survivor detection.
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Fig. 11. Caparison of the different DRL techniques in terms of (a) reward
accumulation throughout the training episode, (b) intelligent behavior obser-
vation via detection distance.
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Fig. 12. Assessing the surveillance performance of the UAVs via (a)
comparing the collaborative coverage percentage with different swarm sizes
and (b) comparing the KDE curves using different DRL models.

D. Assessment of Improved DRLs

In this section, we compare our improved DRL approaches
with conventional DRL in terms of reward accumulation and
intelligent behavior (Figure 11). As shown in Figure 11(a),
general DRL has slower learning, lower rewards, and high
variability, plateauing after 600 episodes. Federated DRL
improves performance through distributed learning, achieving
higher, more stable rewards. SRMB-FDRL performs best, with
faster convergence, higher peak rewards, and stable learning
due to the significant reply memory buffer. Figure 11(b)
compares survivor detection distances for the three methods.
SRMB-FDRL (green) achieves the highest frequency of detec-
tions at greater distances (4-7), reflecting intelligent detection
behavior. General DRL (blue) concentrates detections at close
ranges (1-2), indicating less efficient strategies. Federated
DRL (orange) shows intermediate performance, improving
over DRL but falling short of SRMB-FDRL. This highlights
SRMB-FDRL as the most effective method for enabling agents
to detect survivors efficiently from safer distances.

E. Evaluation of the Surveillance Performance

In this section, we evaluate the surveillance efficiency of the
DREUS framework, as shown in Figure 12. From Figure 12(a),
it is observed that coverage improves with larger UAV swarms.
By episode 1000, the 150 UAV group achieves 97% area cov-
erage, compared to 92% for 100 UAVs and 65% for 50 UAVs.
While larger swarms offer better collaboration and exploration,
gains diminish after 800 episodes as coverage plateaus. The
results demonstrate strong scalability and efficiency, with the
most significant improvements occurring early in training.

Figure 12(b) compares surveillance performance across
general DRL, Federated DRL, and SRMB-FDRL using KDE

9



0 200 400 600 800 1000
Episode Number

0

20

40

60

80

C
ol

la
bo

ra
tiv

e 
C

ov
er

ag
e 

%
Average Coverage Percentage for 50 Iterations

=0
=0.25
=0.5
=0.75
=1

(a)

0 200 400 600 800 1000
Episode Number

0

500

1000

1500

2000

2500

3000

3500

# 
of

 C
ol

lis
io

n

Average Collision Count (RPR=1)

=0
=0.33
=0.66
=1

(b)
Fig. 13. Experiment with SRMB parameters for determining optimal values
of σ and ϕ: (a) average coverage percentage for the agents with variable
ϕ parameter values with σ=0.7 and L=4, for 50 iterations, and (b) average
collision count for the agents with variable σ values with ϕ=1 and RPR=1.

curves of unique cell visits. General DRL shows the widest,
flattest distribution, indicating inconsistent coverage. Feder-
ated DRL improves coverage with a narrower, higher peak,
showing better UAV collaboration. SRMB-FDRL achieves the
most efficient performance, with a sharp, focused peak re-
flecting consistent and intelligent exploration. Overall, SRMB-
FDRL significantly enhances surveillance efficiency compared
to the other methods.

F. Experimenting with the SRMB parameters

In this section, we analyze the SRMB parameters ϕ and
σ. Figure 13(a) shows the collaborative coverage percentage
for different ϕ values. Higher ϕ values generally improve
coverage, with ϕ = 0.75 achieving the best performance,
reaching 80% coverage after episode 200. Having ϕ = 0.5
and ϕ = 1, DREUS performs well but lags slightly, while lower
values (ϕ = 0, 0.25) incur slower growth, indicating inefficient
memory tuple selection. Optimal performance is achieved with
ϕ between 0.5 and 0.75. Figure 13(b) evaluates collision counts
for varying σ values, which control sampling between SRMB
and regular buffers. Higher σ reduces collisions, with σ = 1
showing the steepest drop, nearing zero collisions by episode
400. Lower σ values, like σ = 0, result in consistently high
collision counts. Intermediate values (σ = 0.33, 0.66) show
gradual improvement, with σ = 0.66 striking a balance by
significantly reducing collisions after 400 episodes.

G. Detection Performance and Inference Efficiency

Several detection models were evaluated for our disaster
response task, but the YOLO architecture by Ultralytics [28]
was chosen for its high-speed, real-time analysis. Unlike
traditional region-based methods, YOLO uses a single-pass
approach for object predictions, greatly improving processing
speed. While models like Faster R-CNN and RetinaNet may
excel in specific cases, YOLO’s speed makes it ideal for real-
time tasks. We selected YOLOv8 for its strong performance,
accuracy, and extensive community support. The YOLOv8
models offer various weights, ranging from lightweight models
like YOLOv8n (3.2 million parameters) to larger ones like
YOLOv8x (70 million parameters). Testing on a custom
dataset (Figure 14) showed that larger models (YOLOv8l and
YOLOv8x) achieved higher accuracy but took significantly
longer to process images, making them unsuitable for real-
time use. Lightweight models like YOLOv8n and YOLOv8s
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Fig. 14. Comparing different YOLO models with respect to (a) the average
number of persons detected and the corresponding confidence scores, and (b)
average inference time in milliseconds (ms).

balanced speed and accuracy effectively. Figure 14(a) com-
pares person detection counts (blue line) and confidence
scores (green line). While models detecting more individuals
may show lower confidence, balancing detection count and
confidence is crucial for accuracy and reliability.

Figure 14(b) highlights inference times, a key factor for real-
time performance. Shorter times ensure system responsiveness,
critical for applications like surveillance. Although higher-
accuracy models may require longer processing times, balanc-
ing accuracy and speed is essential for these scenarios. Since
YOLOv8m achieves good detection with high confidence,
having a reasonable inference time, we choose this model to
present a human detection case study in Figure 15.

Fig. 15. Person detection with confidence score using YOLOv8m.

H. Experiment with Different Aggregator Models
Table II presents the comparative analysis of the aggregator

algorithms, with different K values. We start by setting the
K value to 1, meaning the global model will be updated after
every episode. Then we increase the K value and found that
setting this parameter’s value to 6 incurs the highest average
reward after 1000 episodes. Also, the FedAvg algorithm was
found to be the most fitting option for this application.

TABLE II
DREUS’S PERFORMANCE W.R.T. AGGREGATION ALGORITHMS

Algorithm Total Reward after 1000 episodes
K=1 K=3 K=6 K=9 K=12

FedSGD 832 1578 1892 1209 782
FedAvg 1578 1892 2378 2128 2067
FedMA 1123 1592 1928 1683 1389

I. Case study with a Graphic Simulator

We use the CoppeliaSim Robotics Simulator [15] to run
simulations for the 3D disaster environment and observe
how well the DREUS performs in real-world situations. The
simulator incorporates a physics engine to replicate real-world
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Fig. 16. Case study of DREUS using CoppeliaSim Robotics Simulator.

dynamics, such as wind and collisions. In the simulation,
survivors are represented by standing or moving humanoid
models amidst damaged buildings, while obstacles include
rubble, broken structures, and scattered furniture (Figure 16).
The UAVs demonstrate intelligent behavior, effectively navi-
gating the complex environment and adapting trajectories.

VII. CONCLUSION

In this work, we presented DREUS, a robust DRL-based
framework designed to enhance UAV swarm operations in
post-disaster environments. By integrating a shared swarm
database, the framework enables coordinated exploration and
seamless survivor identification, reducing redundancy and im-
proving efficiency. The adoption of federated DRL facilitates
collaborative learning across the swarm, while the SRMB
expedites individual agent training through prioritized expe-
riences. Realism in the training process is further ensured by
modeling survivor movement with real-world human mobil-
ity datasets in disaster scenarios. Comprehensive evaluations
in OpenAI Gym and CoppeliaSim validate the framework’s
ability to navigate complex environments, locate survivors,
and deliver effective assistance. These results demonstrate the
potential of DREUS to advance disaster response capabilities,
paving the way for intelligent, autonomous UAV systems that
can adapt to the challenges of real-world scenarios.

REFERENCES

[1] G. Muchiri and S. Kimathi, “A review of applications and potential
applications of uav,” in Proceedings of the Sustainable Research and
Innovation Conference, 2022, pp. 280–283.

[2] W. Alawad, N. B. Halima, and L. Aziz, “An unmanned aerial vehicle
(uav) system for disaster and crisis management in smart cities,”
Electronics, vol. 12, no. 4, p. 1051, 2023.

[3] UN-OCHA, “From digital promise to frontline practice,”
https://www.unocha.org/publications/report/world/digital-promise-
frontline-practice-new-and-emerging-technologies-humanitarian-action.

[4] Y. Karaca, M. Cicek, O. Tatli, A. Sahin, S. Pasli, M. F. Beser, and
S. Turedi, “The potential use of unmanned aircraft systems (drones)
in mountain search and rescue operations,” The American journal of
emergency medicine, vol. 36, no. 4, pp. 583–588, 2018.

[5] IFRC, “Drones – uncrewed aerial vehicles (uav) team,”
https://go.ifrc.org/surge/catalogue/other/uav.

[6] M. Erdelj, E. Natalizio, K. R. Chowdhury, and I. F. Akyildiz, “Help
from the sky: Leveraging uavs for disaster management,” IEEE Pervasive
Computing, vol. 16, no. 1, pp. 24–32, 2017.

[7] N. Kerle, F. Nex, M. Gerke, D. Duarte, and A. Vetrivel, “Uav-based
structural damage mapping: A review,” ISPRS international journal of
geo-information, vol. 9, no. 1, p. 14, 2019.

[8] Y. Bai, K. Asami, M. Svinin, and E. Magid, “Cooperative multi-
robot control for monitoring an expanding flood area,” in 2020 17th
International Conference on Ubiquitous Robots (UR). IEEE, 2020.

[9] A. Phadke and F. A. Medrano, “Increasing operational resiliency of uav
swarms: An agent-focused search and rescue framework,” Aerospace
Research Communications, vol. 1, p. 12420, 2024.

[10] Y. Wan, Y. Zhong, A. Ma, and L. Zhang, “An accurate uav 3-d path
planning method for disaster emergency response based on an improved
multiobjective swarm intelligence algorithm,” IEEE Transactions on
Cybernetics, vol. 53, no. 4, pp. 2658–2671, 2022.

[11] Yolov8, “Ultralytics yolov8,” https://docs.ultralytics.com/models/yolov8/.
[12] OpenCV, “Git-repo,” https://github.com/opencv/opencv/tree/-

master/data/haarcascades.
[13] Q. Wang and J. E. Taylor, “Patterns and limitations of urban human

mobility resilience under the influence of multiple types of natural
disaster,” PLoS one, vol. 11, no. 1, p. e0147299, 2016.

[14] OpenAI, “Gym is a standard api for reinforcement learning,
and a diverse collection of reference environments,”
https://www.gymlibrary.dev/index.html.

[15] CoppeliaSim, “Create. compose. simulate. any robot.”
https://www.coppeliarobotics.com/.

[16] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: lessons we
have learned,” The International Journal of Robotics Research, 2021.

[17] S. K. Khare, V. Blanes-Vidal, E. S. Nadimi, and U. R. Acharya,
“Emotion recognition and artificial intelligence: A systematic review
(2014–2023) and research recommendations,” Information fusion, vol.
102, p. 102019, 2024.

[18] J. Liu, J. Huang, Y. Zhou, X. Li, S. Ji, H. Xiong, and D. Dou,
“From distributed machine learning to federated learning: A survey,”
Knowledge and Information Systems, pp. 1–33, 2022.

[19] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated machine
learning: Survey, multi-level classification, desirable criteria and future
directions in communication and networking systems,” IEEE Communi-
cations Surveys & Tutorials, vol. 23, no. 2, pp. 1342–1397, 2021.

[20] C. Gomez and H. Purdie, “Uav-based photogrammetry and geocomput-
ing for hazards and disaster risk monitoring–a review,” Geoenvironmen-
tal Disasters, vol. 3, pp. 1–11, 2016.

[21] A. Mohapatra and T. Trinh, “Early wildfire detection technologies in
practice—a review,” Sustainability, vol. 14, no. 19, p. 12270, 2022.

[22] H. S. Munawar, F. Ullah, S. Qayyum, S. I. Khan, and M. Mojtahedi,
“Uavs in disaster management: Application of integrated aerial imagery
and convolutional neural network for flood detection,” Sustainability,
vol. 13, no. 14, p. 7547, 2021.

[23] D. Oh and J. Han, “Smart search system of autonomous flight uavs for
disaster rescue,” Sensors, vol. 21, no. 20, p. 6810, 2021.

[24] E. Lygouras, N. Santavas, A. Taitzoglou, K. Tarchanidis, A. Mitropoulos,
and A. Gasteratos, “Unsupervised human detection with an embedded
vision system on a fully autonomous uav for search and rescue opera-
tions,” Sensors, vol. 19, no. 16, p. 3542, 2019.

[25] D. Zhang, Y. M. Shiguematsu, J.-Y. Lin, Y.-H. Ma, M. S. Al Maa-
mari, and A. Takanishi, “Development of a hybrid locomotion robot
for earthquake search and rescue in partially collapsed building,” in
2019 IEEE International Conference on Mechatronics and Automation
(ICMA). IEEE, 2019, pp. 2559–2564.

[26] B. Wang, Y. Sun, D. Liu, H. M. Nguyen, and T. Q. Duong, “Social-
aware uav-assisted mobile crowd sensing in stochastic and dynamic en-
vironments for disaster relief networks,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 1, pp. 1070–1074, 2019.

[27] C. Wu, B. Ju, Y. Wu, X. Lin, N. Xiong, G. Xu, H. Li, and X. Liang,
“Uav autonomous target search based on deep reinforcement learning
in complex disaster scene,” IEEE Access, 2019.

[28] Ultralytics, “Yolo.” https://github.com/ultralytics.
[29] ——, “Bytetracker,” https://docs.ultralytics.com/reference/-

trackers/bytetracker/.
[30] H. Yuan and T. Ma, “Federated accelerated stochastic gradient descent,”

Advances in Neural Information Processing Systems, 2020.
[31] S. Ek, F. Portet, P. Lalanda, and G. Vega, “Evaluation of federated learn-

ing aggregation algorithms: application to human activity recognition,”
in 2020 ACM International Symposium on Wearable Computers, 2020.

[32] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khaz-
aeni, “Federated learning with matched averaging,” arXiv preprint
arXiv:2002.06440, 2020.

11


